Development of Soft Sensor to Estimate Multiphase Flow Rates Using Neural Networks and Early Stopping
نویسندگان
چکیده
This paper proposes a soft sensor to estimate phase flow rates utilizing common measurements in oil and gas production wells. The developed system addresses the limited production monitoring due to using common metering facilities. It offers a cost-effective solution to meet real-time monitoring demands, reduces operational and maintenance costs, and acts as a back-up to multiphase flow meters. The soft sensor is developed using feed-forward neural network, and generalization and network complexity are regulated using K-fold cross-validation and early stopping technique. The soft sensor is validated using actual well test data from producing wells, and model performance is analyzed using cumulative deviation and cumulative flow plots. The developed soft sensor shows promising performance with a mean absolute percent error of around 4% and less than 10% deviation for 90% of the samples.
منابع مشابه
Estimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming
Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...
متن کاملارزیابی عملکرد مدلهای محاسباتی نرم در تخمین ارتفاع امواج در بندر انزلی
Wind waves are one of the important, fundamental and interesting subjects in port and coastal engineering. Thus, within years, different methods such as experimental methods, numerical modeling and soft computing methods have been employed to estimate the wave parameters. In this study, waves height in Anzali port is predicted using soft computing models such as multivariate adaptive regressi...
متن کاملAccuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.
Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...
متن کاملFlow Pattern and Oil Holdup Prediction in Vertical Oil–Water Two–Phase Flow Using Pressure Fluctuation Signal
In this work, the feasibility of flow pattern and oil hold up the prediction for vertical upward oil–water two–phase flow using pressure fluctuation signals was experimentally investigated. Water and diesel fuel were selected as immiscible liquids. Oil hold up was measured by Quick Closing Valve (QCV) technique, and five flow patterns were identified using high-speed photo...
متن کاملEstimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks
Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...
متن کامل